The emerging field of plasmonics could bring advances in chemical manufacturing, usher in new clean and sustainable technologies and desalination systems to avert a future global water crisis.
Plasmonic materials contain features, patterns or elements that enable unprecedented control of light by harnessing clouds of electrons called surface plasmons.
"Plasmonics offers the ultimate control over light and photochemistry, with the help of metallic nanostructures capable of concentrating electromagnetic energy into nanoscale volumes," said Vladimir M. Shalaev, Purdue University's Bob and Anne Burnett Distinguished Professor in Electrical and Computer Engineering. "It may have a transformative impact on the way we will drive, manipulate, enhance, and monitor chemical processes in the future."
Read more at: https://phys.org/news/2017-06-plasmonics-sustainable-society-desalination-tech.html#jCp
The emerging field of plasmonics could bring advances in chemical manufacturing, usher in new clean and sustainable technologies and desalination systems to avert a future global water crisis.
Plasmonic materials contain features, patterns or elements that enable unprecedented control of light by harnessing clouds of electrons called surface plasmons.
"Plasmonics offers the ultimate control over light and photochemistry, with the help of metallic nanostructures capable of concentrating electromagnetic energy into nanoscale volumes," said Vladimir M. Shalaev, Purdue University's Bob and Anne Burnett Distinguished Professorin Electrical and Computer Engineering. "It may have a transformative impact on the way we will drive, manipulate, enhance, and monitor chemical processes in the future."