A team of researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory has identified a nickel oxide compound as an unconventional but promising candidate material for high-temperature superconductivity.
The team successfully synthesized single crystals of a metallic trilayer nickelate compound, a feat the researchers believe to be a first.
"It's poised for superconductivity in a way not found in other nickel oxides. We're very hopeful that all we have to do now is find the right electron concentration."
This nickel oxide compound does not superconduct, said John Mitchell, an Argonne Distinguished Fellow and associate director of the laboratory's Materials Science Division, who led the project, which combined crystal growth, X-ray spectroscopy, and computational theory. But, he added, "It's poised for superconductivity in a way not found in other nickel oxides. We're very hopeful that all we have to do now is find the right electron concentration."
Mitchell and seven co-authors announced their results in this week's issue of Nature Physics.
Read more at: https://phys.org/news/2017-06-nickel-thought-compound-potential-high-temperature.html#jCp
A team of researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory has identified a nickel oxide compound as an unconventional but promising candidate material for high-temperature superconductivity.
The team successfully synthesized single crystals of a metallic trilayer nickelate compound, a feat the researchers believe to be a first.
"It's poised for superconductivity in a way not found in other nickel oxides. We're very hopeful that all we have to do now is find the right electron concentration."
This nickel oxide compound does not superconduct, said John Mitchell, an Argonne Distinguished Fellow and associate director of the laboratory's Materials Science Division, who led the project, which combined crystal growth, X-ray spectroscopy, and computational theory. But, he added, "It's poised for superconductivity in a way not found in other nickel oxides. We're very hopeful that all we have to do now is find the right electron concentration."
Mitchell and seven co-authors announced their results in this week's issue of Nature Physics.