One of the most promising microscale power sources for portable and wearable electronics is a micro-supercapacitor—they can be made thin, lightweight, highly flexible, and with a high power density. Normally, however, manufacturing these devices involves complicated techniques that often require high pressures, irradiation, and multiple steps.

In a new study, researchers have developed a simple "one-step method" for fabricating micro-supercapacitors and demonstrate that the final devices exhibit a very good overall performance, including a high power density (1500 mW/cm3) as well as an energy density (11.6 mWh/cm3) that is at least twice as high as similar micro-supercapacitors.

The researchers, Han Xiao et al. at the Chinese Academy of Sciences, have published their paper in a recent issue of ACS Nano.

"We have developed a versatile, simple and effective method for fabricating high-energy micro-supercapacitors with designed shapes," coauthor Zhong-Shuai Wu at the Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, told Phys.org.



Read more at: https://phys.org/news/2017-07-simple-fabricate-micro-supercapacitors-high-energy.html#jCp

One of the most promising microscale power sources for portable and wearable electronics is a micro-supercapacitor—they can be made thin, lightweight, highly flexible, and with a high power density. Normally, however, manufacturing these devices involves complicated techniques that often require high pressures, irradiation, and multiple steps.

In a new study, researchers have developed a simple "one-step method" for fabricating micro-supercapacitors and demonstrate that the final devices exhibit a very good overall performance, including a high power density (1500 mW/cm3) as well as an energy density (11.6 mWh/cm3) that is at least twice as high as similar micro-supercapacitors.

The researchers, Han Xiao et al. at the Chinese Academy of Sciences, have published their paper in a recent issue of ACS Nano.

"We have developed a versatile, simple and effective method for fabricating high-energy micro-supercapacitors with designed shapes," coauthor Zhong-Shuai Wu at the Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, told Phys.org.

To read more, click here.