We connect to each other through particles. Calls and texts ride flecks of light, Web sites and photographs load on electrons. All communication is, essentially, physical. Information is recorded and broadcast on actual objects, even those we cannot see.
Physicists also connect to the world when they communicate with it. They dispatch glints of light toward particles or atoms, and wait for this light to report back. The light interacts with the bits of matter, and how this interaction changes the light reveals a property or two of the bits—although this interaction often changes the bits, too. The term of art for such a candid affair is a measurement.
Particles even connect to each other using other particles. The force of electromagnetism between two electrons is conveyed by particles of light, and quarks huddle inside a proton because they exchange gluons. Physics is, essentially, the study of interactions.
Information is always conveyed through interactions, whether between particles or ourselves. We are compositions of particles who communicate with each other, and we learn about our surroundings by interacting with them. The better we understand such interactions, the better we understand the world and ourselves.
Physicists already know that interactions are local. As with city politics, the influence of particles is confined to their immediate precincts. Yet interactions remain difficult to describe. Physicists have to treat particles as individuals and add complex terms to their solitary existence to model their intimacies with other particles. The resulting equations are usually impossible to solve. So physicists have to approximate even for single particles, which can interact with themselves as a boat rolls in its own wake. Although physicists are meticulous, it is a wonder they ever succeed. Still, their contentions are the most accurate theories we have.
Quantum mechanics is the consummate theory of particles, so it naturally describes measurements and interactions. During the past few decades, as computers have nudged the quantum, the theory has been reframed to encompass information, too. What quantum mechanics implies for measurements and interactions is notoriously bizarre. Its implications for information are stranger still.
One of the strangest of these implications refutes the material basis of communication as well as common sense. Some physicists believe that we may be able to communicate without transmitting particles. In 2013 an amateur physicist named Hatim Salih even devised a protocol, alongside professionals, in which information is obtained from a place where particles never travel. Information can be disembodied. Communication may not be so physical after all.
To read more, click here.