A sleek mechanical arm plunges into a pool of what looks like milky gray ink in Carbon’s lab in Redwood City, California. The black arm slowly moves upwards, pulling a latticed plastic cube out of the bath, shiny and dripping with ink: a large-scale model of the porous structure of bone.

Joseph DeSimone, Carbon’s CEO and cofounder, looks on. DeSimone, a polymer chemist, helped invent these machines, and he still gets a kick out of watching them work. It is a form of 3-D printing, but it’s done in a novel way that is faster than previous techniques and works with many more types of plastics. The way the printer pulls the object smoothly from the pool of milky liquid, millimeter by millimeter, gives the illusion that an existing structure is emerging. In fact, the liquid is a light-sensitive precursor material; a digital projector is continuously projecting ultraviolet light onto the bottom of the lattice, the first of two steps that harden the material to form the plastic object.

Using its process for rapidly printing objects with high-performance polymers like polyurethanes and epoxies, four-year-old Carbon is pursuing an approach fundamentally different from other methods of 3-D printing, which put down layers of plastic one at a time. That limits the quality of many 3-D-printed products, but Carbon fabricates an object in a continuous process, avoiding some typical problems. DeSimone say his technology enables Carbon to print polymer objects rapidly, in some cases thousands of times faster than other 3-D printers, and use a wider range of materials, including rubber-like elastomers and durable, hard plastics.

To read more, click here.