Conventional electronic devices make use of semiconductor circuits and they transmit information by electric charges. However, such devices are being pushed to their physical limit and the technology is facing immense challenges to meet the increasing demand for speed and further miniaturisation. Spin wave based devices, which utilise collective excitations of electronic spins in magnetic materials as a carrier of information, have huge potential as memory devices that are more energy efficient, faster, and higher in capacity.

While spin wave based devices are one of the most promising alternatives to current semiconductor technology, spin wave signal propagation is anisotropic in nature -- its properties vary in different directions -- thus posing challenges for practical industrial applications of such devices.

A research team led by Professor Adekunle Adeyeye from the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering, has recently achieved a significant breakthrough in spin wave information processing technology. His team has successfully developed a novel method for the simultaneous propagation of spin wave signals in multiple directions at the same frequency, without the need for any external magnetic field.

To read more, click here.