Researchers have designed an optical lens that exhibits two properties that so far have not been demonstrated together: self-focusing and an optical effect called the Talbot effect that creates repeating patterns of light. The researchers showed that the combination of these two properties can be used to transfer an encoded digital signal without information loss, which has potential applications for realizing highly efficient optical communication systems.
The scientists, Xiangyang Wang and Hui Liu at Nanjing University, Huanyang Chen at Xiamen University, along with their coauthors, have published a paper on the new lens, called a "conformal lens," in a recent issue of Physical Review Letters.
This type of a conformal lens, which is also known as a Mikaelian lens, arose from the field of transformation optics, which is based on the idea that lenses can direct light in analogy with how the curved geometry of spacetime bends light in general relativity.
Read more at: https://phys.org/news/2017-07-optical-lens-digital-loss.html#jCp
Researchers have designed an optical lens that exhibits two properties that so far have not been demonstrated together: self-focusing and an optical effect called the Talbot effect that creates repeating patterns of light. The researchers showed that the combination of these two properties can be used to transfer an encoded digital signal without information loss, which has potential applications for realizing highly efficient optical communication systems.
The scientists, Xiangyang Wang and Hui Liu at Nanjing University, Huanyang Chen at Xiamen University, along with their coauthors, have published a paper on the new lens, called a "conformal lens," in a recent issue of Physical Review Letters.
This type of a conformal lens, which is also known as a Mikaelian lens, arose from the field of transformation optics, which is based on the idea that lenses can direct light in analogy with how the curved geometry of spacetime bends light in general relativity.