For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. The new device, developed by a team of researchers from Arizona State University and Tsinghua University, Beijing, China, could potentially be used to send information between different points on a single computer chip. The lasers also may be useful for other sensing applications in a compact, integrated format.

"This is the first demonstration of room-temperature operation of a nanolaser made of the single-layer material," said Cun-Zheng Ning, an ASU electrical engineering professor who led the research team. Details of the new are published in the July online edition of Nature Nanotechnology.

In addition to Ning, key authors of the article, "Room-temperature Continuous-wave Lasing from Monolayer Molybdenum Ditelluride Integrated with a Silicon Nanobeam Cavity," include Yongzhuo Li, Jianxing Zhang, Dandan Huang from Tsinghua University.

Ning said pivotal to the new development is use of materials that can be laid down in single layers and efficiently amplify light (lasing action). Single layer nanolasers have been developed before, but they all had to be cooled to low temperatures using a cryogen like liquid nitrogen or liquid helium. Being able to operate at room temperatures (~77 F) opens up many possibilities for uses of these new lasers," Ning said.



Read more at: https://phys.org/news/2017-07-molecular-layer-thin-silicon-enable.html#jCp

For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. The new device, developed by a team of researchers from Arizona State University and Tsinghua University, Beijing, China, could potentially be used to send information between different points on a single computer chip. The lasers also may be useful for other sensing applications in a compact, integrated format.

"This is the first demonstration of
room-temperature operation of a nanolaser made of the single-layer material," said Cun-Zheng Ning, an ASU electrical engineering professor who led the research team. Details of the new laser are published in the July online edition of Nature Nanotechnology.

In addition to Ning, key authors of the article, "Room-temperature Continuous-wave Lasing from Monolayer Molybdenum Ditelluride Integrated with a Silicon Nanobeam Cavity," include Yongzhuo Li, Jianxing Zhang, Dandan Huang from Tsinghua University.

Ning said pivotal to the new development is
use of materials that can be laid down in single layers and efficiently amplify light (lasing action). Single layer nanolasers have been developed before, but they all had to be cooled to low temperatures using a cryogen like liquid nitrogen or liquid helium. Being able to operate at room temperatures (~77 F) opens up many possibilities for uses of these new lasers," Ning said.

To read more, click here.