Quantum entanglement remains one of the most challenging fields of study for modern physicists. Described by Einstein as “spooky action at a distance”, scientists have long sought to reconcile how this aspect of quantum mechanics can coexist with classical mechanics. Essentially, the fact that two particles can be connected over great distances violates the rules of locality and realism.
Formally, this is a violation of Bell’s Ineqaulity, a theory which has been used for decades to show that locality and realism are valid despite being inconsistent with quantum mechanics. However, in a recent study, a team of researchers from the Ludwig-Maximilian University (LMU) and the Max Planck Institute for Quantum Optics in Munich conducted tests which once again violate Bell’s Inequality and proves the existence of entanglement.
Their study, titled “Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes“, was recently published in the Physical Review Letters. Led by Wenjamin Rosenfeld, a physicist at LMU and the Max Planck Institute for Quantum Optics, the team sought to test Bell’s Inequality by entangling two particles at a distance.
Bell’s Inequality (named after Irish physicist John Bell, who proposed it in 1964) essentially states that properties of objects exist independent of being observed (realism), and no information or physical influence can propagate faster than the speed of light (locality). These rules perfectly described the reality we human beings experience on a daily basis, where things are rooted in a particular space and time and exist independent of an observer.
However, at the quantum level, things do not appear to follow these rules. Not only can particles be connected in non-local ways over large distances (i.e. entanglement), but the properties of these particles cannot be defined until they are measured. And while all experiments have confirmed that the predictions of quantum mechanics are correct, some scientists have continued to argue that there are loopholes that allow for local realism.
To address this, the Munich team conducted an experiment using two laboratories at LMU. While the first lab was located in the basement of the physics department, the second was located in the basement of the economics department – roughly 400 meters away. In both labs, teams captured a single rubidium atom in an topical trap and then began exciting them until they released a single photon.
To read more, click here.