Rice University chemists have produced a catalyst based on laser-induced graphene that splits water into hydrogen on one side and oxygen on the other side. They said the inexpensive material may be a practical component in generating the hydrogen for use in future fuel cells.
The easily fabricated material developed by the Rice lab of chemist James Tour offers a robust and efficient way to store chemical energy. Tests showed the thin catalyst producing large bubbles of oxygen and hydrogen on either side simultaneously.
The process is the subject of a paper in the American Chemical Society's Applied Materials and Interfaces.
"Hydrogen is currently made by converting natural gas to a mixture of carbon dioxide and hydrogen gas," Tour said. "So for every two hydrogen molecules, a molecule of carbon dioxide is formed, making this traditional process a greenhouse-gas emitter.
"But if one splits water into hydrogen and oxygen, using a catalytic system and electricity generated from wind or solar energy, then the hydrogen afforded is entirely renewable," he said. "Once used in a fuel cell, it reverts back to water with no other emissions. And fuel cells are often twice as efficient as internal combustion engines, further saving energy."
To read more, click here.