The next generation of feature-filled and energy-efficient electronics will require computer chips just a few atoms thick. For all its positive attributes, trusty silicon can't take us to these ultrathin extremes.
Now, electrical engineers at Stanford have identified two semiconductors - hafnium diselenide and zirconium diselenide - that share or even exceed some of silicon's desirable traits, starting with the fact that all three materials can "rust."
"It's a bit like rust, but a very desirable rust," said Eric Pop, an associate professor of electrical engineering, who co-authored with post-doctoral scholar Michal Mleczko a paper that appears in the journal Science Advances.
The new materials can also be shrunk to functional circuits just three atoms thick and they require less energy than silicon circuits. Although still experimental, the researchers said the materials could be a step toward the kinds of thinner, more energy-efficient chips demanded by devices of the future.
Read more at: https://phys.org/news/2017-08-ultrathin-semiconductor-materials-silicon-secret.html#jCp
The next generation of feature-filled and energy-efficient electronics will require computer chips just a few atoms thick. For all its positive attributes, trusty silicon can't take us to these ultrathin extremes.
Now, electrical engineers at Stanford have identified two semiconductors - hafnium diselenide and zirconium diselenide - that share or even exceed some ofsilicon's desirable traits, starting with the fact that all three materials can "rust."
"It's a bit like rust, but a very desirable rust," said Eric Pop, an associate professor of electrical engineering, who co-authored with post-doctoral scholar Michal Mleczko a paper that appears in the journal Science Advances.
The new materials can also be shrunk to functional circuits just three atoms thick and they require less energy than silicon circuits. Although still experimental, the researchers said the materials could be a step toward the kinds of thinner, more energy-efficient chips demanded by devices of the future.