Scientists have discovered a remarkably simple way to suppress a common instability that can halt fusion reactions and damage the walls of reactors built to create a "star in a jar." The findings, published in June in the journal Physical Review Letters, stem from experiments performed on the National Spherical Torus Experiment-Upgrade (NSTX-U), at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL).

The suppressed instability is called a global Alfvén eigenmode (GAE)—a common wave-like disturbance that can cause reactions to fizzle out. Suppression was achieved with a second neutral injector recently installed as part of the NSTX-U upgrade. Just a small amount of highly from this second injector was able to shut down the GAEs.



Read more at: https://phys.org/news/2017-08-quick-easy-instabilities-fusion-devices.html#jCp

Scientists have discovered a remarkably simple way to suppress a common instability that can halt fusion reactions and damage the walls of reactors built to create a "star in a jar." The findings, published in June in the journal Physical Review Letters, stem from experiments performed on the National Spherical Torus Experiment-Upgrade (NSTX-U), at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL).

The suppressed instability is called a global Alfvén eigenmode (GAE)—a common wave-like disturbance that can cause fusion reactions to fizzle out. Suppression was achieved with a second neutral beam injector recently installed as part of the NSTX-U upgrade. Just a small amount of highly energetic particles from this second injector was able to shut down
theGAEs.

To read more, click here.