While lithium-ion batteries, widely used in mobile devices from cell phones to laptops, have one of the longest lifespans of commercial batteries today, they also have been behind a number of recent meltdowns and fires due to short-circuiting in mobile devices. In hopes of preventing more of these hazardous malfunctions researchers at Drexel University have developed a recipe that can turn electrolyte solution -- a key component of most batteries -- into a safeguard against the chemical process that leads to battery-related disasters.

Yury Gogotsi, PhD, Distinguished University and Bach professor in the College of Engineering, and his research team from the Department of Materials Science and Engineering, recently published their work -- entitled "Nanodiamonds Suppress Growth of Lithium Dendrites" -- in the journal Nature Communications. In it, they describe a process by which nanodiamonds -- tiny diamond particles 10,000 times smaller than the diameter of a hair -- curtail the electrochemical deposition, called plating, that can lead to hazardous short-circuiting of lithium ion batteries.

To read more, click here.