The 4th International Conference on Quantum Technologies held in Moscow last month was supposed to put the spotlight on Google, who were preparing to give a lecture on a 49-qubit quantum computer they have in the works.
A morning talk presented by Harvard University's Mikhail Lukin, however, upstaged that evening's event with a small announcement of his own – his team of American and Russian researchers had successfully tested a 51-qubit device, setting a landmark in the race for quantum supremacy.
Quantum computers are considered to be part of the next generation in revolutionary technology; devices that make use of the odd 'in-between' states of quantum particles to accelerate the processing power of digital machines.
The truth is both fascinating and disappointing. It's unlikely we'll be playing Grand Theft Auto VR8K-3000 on a quantum-souped Playstation 7 any time soon. Sorry, folks.
Quantum computing isn't all about swapping one kind of chip for a faster one.
What it does do is give us a third kind of bit where typical computers have only two. In quantum computing, we apply quantum superposition – that odd cloud of 'maybes' that a particle occupies before we observe its existence cemented as one of two different states – to solving highly complex computational problems.
While those kinds of problems are a long, tedious process that tax even our best supercomputers, a quantum computer's "qubit" mix of 1s, 0s, and that extra space in between can make exercises such as simulating quantum systems in molecules or factorising prime numbers vastly easier to crunch.
That's not to say quantum computing could never be a useful addition for your home desktop. But to even begin dreaming of the possibilities, there are a whole number of problems to solve first.
One of them is to ramp up a measly handful of qubits from less than 20 to something that can begin to rival our best classical supercomputers on those trickier tasks.
That number? About 50-odd, a figure that's often referred to in rather rapturous terms as quantum supremacy.
To read more, click here.