The age of discovery is not over. Once, scurvy-riddled Europeans sailed into the unknown to claim foreign, fantastic parts of the world. Now, physicists sit in labs and ask, "Is this all there is?"

No, they aren't suffering a collective existential crisis. They're looking for —the stuff that theoretically makes up a quarter of our universe. And West Aussie researchers are at the forefront of this search, as part of an Australian-wide project to detect a particle called the .

What's the (dark) matter?

If dark matter exists, you are probably sitting in a soup of it right now.

Scientists predict it makes up 26.8% of the universe, which is pretty significant when you consider that everything else we can observe—from hydrogen atoms to black holes—makes up only 5%. (The other 69% is something scientists call dark energy. Don't worry about it.)

There's just one problem. It doesn't interact with electromagnetism—the force between positively and negatively charged particles. It's responsible for practically everything we can observe in day-to-day life—with the exception of gravity.

Electromagnetic forces present between atoms and molecules in the ground is the reason Earth's gravity doesn't keep pulling us all the way down to its (molten hot) core. The light being emitted from your computer, allowing you to read this story, is generated by interactions of electrically charged particles in your monitor, otherwise known as electricity.

Ordinary matter looks like because of the electromagnetic forces between atoms and molecules. But dark matter doesn't interact with electromagnetism. That means we can't see, smell, taste or touch it. So if dark matter is essentially undetectable, why do we think it exists? And what on Earth are we looking for?



Read more at: https://phys.org/news/2017-09-dark.html#jCp

The age of discovery is not over. Once, scurvy-riddled Europeans sailed into the unknown to claim foreign, fantastic parts of the world. Now, physicists sit in labs and ask, "Is this all there is?"

No, they aren't suffering a collective existential crisis. They're looking for dark matter—the stuff that theoretically makes up a quarter of our universe. And West Aussie researchers are at the forefront of this search, as part of an Australian-wide project to detect a particle called the axion.

If dark matter exists, you are probably sitting in a soup of it right now.

Scientists predict it makes up 26.8% of the universe, which is pretty significant when you consider that everything else we can observe—from hydrogen atoms to black holes—makes up only 5%. (The other 69% is something scientists call dark energy. Don't worry about it.)

There's just one problem. It doesn't interact with electromagnetism—the force between positively and negatively charged particles. It's responsible for practically everything we can observe in day-to-day life—with the exception of gravity.

Electromagnetic forces present between atoms and molecules in the ground is the reason Earth's gravity doesn't keep pulling us all the way down to its (molten hot) core. The light being emitted from your computer, allowing you to read this story, is generated by interactions of electrically charged particles in your monitor, otherwise known as electricity.

Ordinary matter looks like ordinary matter because of the electromagnetic forces between atoms and molecules. But dark matter doesn't interact with electromagnetism. That means we can't see, smell, taste or touch it. So if dark matter is essentially undetectable, why do we think it exists? And what on Earth are we looking for?

To read more, click here.