Bacteria have an unfortunate — and inaccurate — public image as isolated cells twiddling about on microscope slides. The more that scientists learn about bacteria, however, the more they see that this hermitlike reputation is deeply misleading, like trying to understand human behavior without referring to cities, laws or speech. “People were treating bacteria as … solitary organisms that live by themselves,” said Gürol Süel, a biophysicist at the University of California, San Diego. “In fact, most bacteria in nature appear to reside in very dense communities.”

The preferred form of community for bacteria seems to be the biofilm. On teeth, on pipes, on rocks and in the ocean, microbes glom together by the billions and build sticky organic superstructures around themselves. In these films, bacteria can divide labor: Exterior cells may fend off threats, while interior cells produce food. And like humans, who have succeeded in large part by cooperating with each other, bacteria thrive in communities. Antibiotics that easily dispatch free-swimming cells often prove useless against the same types of cells when they’ve hunkered down in a film.

As in all communities, cohabiting bacteria need ways to exchange messages. Biologists have known for decades that bacteria can use chemical cues to coordinate their behavior. The best-known example, elucidated by Bonnie Bassler of Princeton University and others, is quorum sensing, a process by which bacteria extrude signaling molecules until a high enough concentration triggers cells to form a biofilm or initiate some other collective behavior.

But Süel and other scientists are now finding that bacteria in biofilms can also talk to one another electrically. Biofilms appear to use electrically charged particles to organize and synchronize activities across large expanses. This electrical exchange has proved so powerful that biofilms even use it to recruit new bacteria from their surroundings, and to negotiate with neighboring biofilms for their mutual well-being.

“I think these are arguably the most important developments in microbiology in the last couple years,” said Ned Wingreen, a biophysicist who researches quorum sensing at Princeton. “We’re learning about an entirely new mode of communication.”

To read more, click here.