In 1937, Italian physicist Ettore Majorana raised the idea of a fermion that is its own antiparticle, which has since become known as the Majorana fermion. Now, a collaborative effort from the University of Sydney and Microsoft has demonstrated how these particles might be used to help push forward the field of quantum computing.
Researchers have observed electrons behaving as Majorana fermions, having taken on the form of quasiparticles. The electrons were moving down a length of nanowire, and were subjected to a magnetic field. In normal circumstances, an electron’s quantum state of spin doesn’t correspond with its motion — but in this case, the spin and the motion did align.
As a result, electrons with opposing spins would also perform opposing helical twists as they moved along the nanowire. This behavior is not unlike the two-dimensional quasiparticles that can be used in a topological quantum computer, which uses spin to hold onto information rather than an electrical charge.
To read more, click here.