UCLA biologists have developed an intervention that serves as a cellular time machine -- turning back the clock on a key component of aging.
In a study on middle-aged fruit flies, the researchers substantially improved the animals' health while significantly slowing their aging. They believe the technique could eventually lead to a way to delay the onset of Parkinson's disease, Alzheimer's disease, cancer, stroke, cardiovascular disease and other age-related diseases in humans.
The approach focuses on mitochondria, the tiny power generators within cells that control the cells' growth and determine when they live and die. Mitochondria often become damaged with age, and as people grow older, those damaged mitochondria tend to accumulate in the brain, muscles and other organs. When cells can't eliminate the damaged mitochondria, those mitochondria can become toxic and contribute to a wide range of age-related diseases, said David Walker, a UCLA professor of integrative biology and physiology, and the study's senior author.
In the new research, Walker and his colleagues found that as fruit flies reach middle age -- about one month into their two-month lifespan -- their mitochondria change from their original small, round shape.
"We think the fact that the mitochondria become larger and elongated impairs the cell's ability to clear the damaged mitochondria," Walker said. "And our research suggests dysfunctional mitochondria accumulate with age, rather than being discarded."
The study, published Sept. 6 in the journal Nature Communications, reports that the UCLA scientists removed the damaged mitochondria by breaking up enlarged mitochondria into smaller pieces -- and that when they did, the flies became more active and more energetic and had more endurance. Following the treatment, female flies lived 20 percent longer than their typical lifespan, while males lived 12 percent longer, on average.
To read more, click here.