A powdery mix of metal nanocrystals wrapped in single-layer sheets of carbon atoms, developed at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), shows promise for safely storing hydrogen for use with fuel cells for passenger vehicles and other uses. And now, a new study provides insight into the atomic details of the crystals' ultrathin coating and how it serves as selective shielding while enhancing their performance in hydrogen storage.
The study, led by Berkeley Lab researchers, drew upon a range of Lab expertise and capabilities to synthesize and coat the magnesium crystals, which measure only 3-4 nanometers (billionths of a meter) across; study their nanoscale chemical composition with X-rays; and develop computer simulations and supporting theories to better understand how the crystals and their carbon coating function together.
Read more at: https://phys.org/news/2017-09-graphene-wrapped-nanocrystals-inroads-next-gen-fuel.html#jCp
A powdery mix of metal nanocrystals wrapped in single-layer sheets of carbon atoms, developed at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), shows promise for safely storing hydrogen for use with fuel cells for passenger vehicles and other uses. And now, a new study provides insight into the atomic details of the crystals' ultrathin coating and how it serves as selective shielding while enhancing their performance in hydrogen storage.
The study, led by Berkeley Lab researchers, drew upon a range of Lab expertise and capabilities to synthesize and coat the magnesium crystals, which measure only 3-4 nanometers (billionths of a meter) across; study theirnanoscale chemical composition with X-rays; and develop computer simulations and supporting theories to better understand how the crystals and their carbon coating function together.