A team led by Cory Dean, assistant professor of physics at Columbia University, and James Hone, Wang Fong-Jen Professor of Mechanical Engineering at Columbia Engineering, has definitively observed an intensely studied anomaly in condensed matter physics—the even-denominator fractional quantum Hall (FQH) state—via transport measurement in bilayer graphene. The study is published online today in Science.

"Observing the 5/2 state in any system is a remarkable scientific opportunity, since it encompasses some of the most perplexing concepts in modern condensed matter physics, such as emergence, quasi-particle formation, quantization, and even superconductivity," Dean says. "Our observation that, in bilayer graphene, the 5/2 state survives to much higher temperatures than previously thought possible not only allows us to study this phenomenon in new ways, but also shifts our view of the FQH state from being largely a scientific curiosity to now having great potential for real-world applications, particularly in quantum computing."



Read more at: https://phys.org/news/2017-10-exotic-quantum-particle-bilayer-graphene.html#jCp

A team led by Cory Dean, assistant professor of physics at Columbia University, and James Hone, Wang Fong-Jen Professor of Mechanical Engineering at Columbia Engineering, has definitively observed an intensely studied anomaly in condensed matter physics—the even-denominator fractional quantum Hall (FQH) state—via transport measurement in bilayer graphene. The study is published online today in Science.

"Observing the 5/2 state in any system is a remarkable scientific
opportunity, since it encompasses some of the most perplexing concepts in modern condensed matter physics, such as emergence, quasi-particle formation, quantization, and even superconductivity," Dean says. "Our observation that, in bilayer graphene, the 5/2 state survives to much higher temperatures than previously thought possible not only allows us to study this phenomenon in new
ways, but also shifts our view of the FQH state from being largely a scientific curiosity to now having great potential for real-world applications, particularly in quantum computing."

To read more, click here.