Even as the power of our modern computers grows exponentially, biological systems—like our brains—remain the ultimate learning machines. By finding materials that act in ways similar to the mechanisms that biology uses to retain and process information, scientists hope to find clues to help us build smarter computers.
Inspired by human forgetfulness—how our brains discard unnecessary data to make room for new information—scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory, in collaboration with Brookhaven National Laboratory and three universities, conducted a recent study that combined supercomputer simulation and X-ray characterization of a material that gradually "forgets." This could one day be used for advanced bio-inspired computing.
"It's hard to create a non-living material that shows a pattern resembling a kind of forgetfulness, but the specific material we were working with can actually mimic that kind of behavior," said Subramanian Sankaranarayanan, Argonne nanoscientist and study author.
"The brain has limited capacity, and it can only function efficiently because it is able to forget," said Subramanian Sankaranarayanan, an Argonne nanoscientist and study author. "It's hard to create a non-living material that shows a pattern resembling a kind of forgetfulness, but the specific material we were working with can actually mimic that kind of behavior."
The material, called a quantum perovskite, offers researchers a simpler non-biological model of what "forgetfulness" might look like on an electronic level. The perovskite shows an adaptive response when protons are repeatedly inserted and removed that resembles the brain's desensitization to a recurring stimulus.
Read more at: https://phys.org/news/2017-10-material-mimics-brain.html#jCp
Even as the power of our modern computers grows exponentially, biological systems—like our brains—remain the ultimate learning machines. By finding materials that act in ways similar to the mechanisms that biology uses to retain and process information, scientists hope to find clues to help us build smarter computers.
Inspired by human forgetfulness—how our brains discard unnecessary data to make room for new information—scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory, in collaboration with Brookhaven National Laboratory and three universities, conducted a recent study that combined supercomputer simulation and X-ray characterization of a material that gradually "forgets." This could one day be used for advanced bio-inspired computing.
"It's hard to create a non-living material that shows a pattern resembling a kind of forgetfulness, but the specific material we were working with can actually mimic that kind of behavior," said Subramanian Sankaranarayanan, Argonne nanoscientist and study author.
"The brain has limited capacity, and it can only function efficiently because it is able to forget," said Subramanian Sankaranarayanan, an Argonne nanoscientist and study author. "It's hard to create a non-living material that shows a pattern resembling a kind of forgetfulness, but the specific material we were working with can actually mimic that kind of behavior."
The material, called a quantum perovskite, offers researchers a simpler non-biological model of what "forgetfulness" might look like on an electronic level. The perovskite shows an adaptive response when protons are repeatedly inserted and removed that resembles the brain's desensitization to a recurring stimulus.