How precise can measurements get? Today, we can get down to the quantum level. Once there, only technical limitations stand in the way. One obstacle to greater precision is Heisenberg’s uncertainty principle. This states that you can’t simultaneously measure a given particle for position and velocity. It’s either one or the other.
With accuracy in measurement, especially where optics or light is concerned, the goal is to reach the Heisenberg limit. That’s as accurate as you can go to scale while accounting for the energy and equipment used in taking the measurement. This is particularly important with optics. Light particles, photons, are easily absorbed or scattered by equipment.
Like other subatomic particles, photons must obey the Heisenberg uncertainty principle, which really puts a damper on taking accurate measurements on the quantum level. For decades scientists have tried to conceive a way to break through the shot-noise limit, or the limit one has when using photons to measure and extract data. Noise is the amount of randomness within photon transmission. Photons can bounce off equipment or disappear. The more noise the less accurate measurements turn out. Now, a team of scientists inAustraliahave done it. They’ve broken through the shot-noise limit. The findings of this landmark study were published in the journal Nature Photonics.