One-dimensional (1D) materials—from nanowires to carbon nanotubes to linear arrays of cold atoms—hold promise for applications in nanoelectronics, sensing, energy harvesting, and quantum information processing. They are also ideal for exploring fundamental quantum phenomena at the nanoscale. Their theoretical description relies on a model known as the Tomonaga-Luttinger liquid (TLL) [1], which can account for the many-body interactions within a 1D ensemble of quantum systems (fermions, spins, or bosons). To date, however, only a few of the aspects of this theory have been experimentally tested. This is mostly due to the difficulty of realizing an ideal and controllable 1D system experimentally.
Two independent teams have now carried out some of the most detailed tests to date of TLL theory. Bing Yang, at the University of Science and Technology of China in Hefei, and co-workers have shown TLL behavior in a 1D array of cold atoms [2], establishing cold atoms as a reliable platform for simulating some aspects of TLL physics that might be hard to access in condensed-matter systems. Timothy Duty of the University of New South Wales, Australia, and co-workers have tested TLL predictions in a 1D array of Josephson junctions [3]—a system that allows them to study the effects of disorder on TLL physics.
To read more, click here.