The search goes on. No difference in protons and antiprotons have yet been found which would help to potentially explain the existence of matter in our universe. However, physicists in the BASE collaboration at the CERN research center have been able to measure the magnetic force of antiprotons with almost unbelievable precision. Nevertheless, the data do not provide any information about how matter formed in the early universe as particles and antiparticles would have had to completely destroy one another. The most recent BASE measurements revealed instead a large overlap between protons and antiprotons, thus confirming the Standard Model of particle physics. Around the world, scientists are using a variety of methods to find some difference, regardless of how small. The matter-antimatter imbalance in the universe is one of the hot topics of modern physics.

Read more at: https://phys.org/news/2017-10-riddle-unsolved-proton-antiproton-fundamental.html#jCp

The search goes on. No difference in protons and antiprotons have yet been found which would help to potentially explain the existence of matter in our universe. However, physicists in the BASE collaboration at the CERN research center have been able to measure the magnetic force of antiprotons with almost unbelievable precision. Nevertheless, the data do not provide any information about how matter formed in the early universe as particles and antiparticles would have had to completely destroy one another. The most recent BASE measurements revealed instead a large overlap between protons and antiprotons, thus confirming the Standard Model of particle physics. Around the world, scientists are using a variety of methods to find some difference, regardless of how small. The matter-antimatter imbalance in the universe is one of the hot topics of modern physics.

To read more, click here.