"We have shown experimentally that we can control whether or not positively and negatively charged particles behave the same way in very short carbon nanotube transistors. In particular, we have shown that in some devices of about 500 atoms long, the positive charges are more confined and act more like particles, while the negative charges are less well confined and act more like waves."
These results suggest new engineering possibilities. "This means that we can take advantage of the quantum nature of electrons to store information," says McRae.
Maximizing the differences between the way that positive and negative charges behave could lead to a new generation of two-in-one quantum electronic devices, he explains. The discovery could have applications in quantum computing, radiation sensing and transistor electronics.
This, in turn, could eventually lead to smarter and more efficient consumer electronics.
To read more, click here.