Using a model of black holes, scientists from the Ural Federal university (UrFU, Yekaterinburg) determined that a popular theory of gravity that seemed to work perfectly at the cosmological level (a subclass of Horndeski theory) does not apply in the real world. They have published their results in Classical and Quantum Gravity.
Modern physics has accumulated a lot of prerequisites for the revision of general relativity, including the accelerated expansion of the universe, the presence of dark matter, and the impossibility of renormalizing gravity. All the fundamental interactions known to science have been described in quantum language except for gravitation. These small inconsistencies indicate that the theory of relativity is not the final theory of gravitation, but an approximation (a similar story occurred with Newton's theory). Theoretical physicists constantly propose extended theories of gravity, and these models need to be compared with observations.
One of the simplest versions of such an extended theory appears under the assumption that the gravitational constant (a fundamental physical quantity that is the same in time and at all points in the universe) is not a constant, but a field that can vary in time and space. Scientists cannot measure this slowly changing field with accuracy, andonly therefore perceive it as a constant. This theory posits gravity with a scalar field (given only one number at each point). This is how the first and simplest theory of gravity with a scalar field, the Brans-Dicke theory, was formulated. This and similar theories are considered to be among the most promising ways of expanding General Relativity.
In his work, Daria Tretyakova,PhD from UrFU, together with her colleague from the University of Tokyo, explored one of these theories—the so-called Horndeski theory. The Horndeski framework gives the most general theory of gravity with a scalar field, without instabilities, and containing "healthy" physics—that is, without any unusual parameters of matter, for example, negative or imaginary mass.