Researchers who successfully cracked a code that governs infections by a major group of viruses have gone a step further, creating their own artificial code.
Previously, scientists at the Universities of York and Leeds discovered that many simple viruses use a hidden code within their genetic instructions for the production of viral proteins that gets decoded during viral assembly.
Now the same researchers have moved beyond simply reading the hidden assembly instructions to writing their own messages to regulate viral assembly. Their ability to decode and repurpose the self-assembly instructions within viral genomes is so efficient that they can write artificial instructions for assembly that are even better than those found in nature.
Since the artificial messages are written in the form of RNA molecules that, unlike viral genomes, no longer encode messages for creating viral proteins, these are completely harmless to the human body.
This new understanding of viral self-assembly codes could prove hugely important in a range of clinical applications, such as cancer therapy and immunisation.
Read more at: https://phys.org/news/2017-10-combatting-viruses-code-breakers-writers.html#jCp
Researchers who successfully cracked a code that governs infections by a major group of viruses have gone a step further, creating their own artificial code.
Previously, scientists at the Universities of York and Leeds discovered that many simple viruses use a hidden code within their genetic instructions for the production of viral proteins that gets decoded during viral assembly.
Now the same researchers have moved beyond simply reading the hidden assembly instructions to writing their own messages to regulate viral assembly. Their ability to decode and repurpose the self-assembly instructions within viral genomes is so efficient that they can write artificial instructions for assembly that are even better than those found in nature.
Since the artificial messages are written in the form of RNA molecules that, unlike viral genomes, no longer encode messages for creating viral proteins, these are completely harmless to the human body.
This new understanding of viral self-assembly codes could prove hugely important in a range of clinical applications, such as cancer therapy and immunization.