Annica Black-Schaffer wants to understand unconventional superconductors. The fact that she recently received the prestigious ERC Starting Grant and is a former recipient of grants from the Knut and Alice Wallenberg Foundation is a testament to the interest in her research. One beckoning application is tomorrow's supercomputers.
Superconductors are materials which, at low temperatures, conduct currents with no resistance and without releasing heat. The phenomenon was discovered in 1911 and now has applications such as MRIs, where the necessary cooling is done with helium.
"What I want is to understand unconventional, rather unusual superconductors and their properties and consequences," says Annica Black-Schaffer, senior lecturer and associate professor in materials theory at the Department of Physics and Astronomy.
One example is topological superconductors. Topology in physics is used to describe how a material's properties change and enter different states under different conditions and temperatures, discoveries which gave David Thouless, Duncan Haldane and Michael Kosterlitz the 2016 Nobel Prize in Physics.