One professor who studies the earth and one who studies space came together in the pursuit to detect and define dark matter. They are one step closer. Using 16 years of archival data from GPS satellites that that orbit the earth, the University of Nevada, Reno team, Andrei Derevianko and Geoff Blewitt in the College of Science, looked for dark matter clumps in the shape of walls or bubbles and which would extend far out beyond the GPS orbits, the solar system and beyond.

A scientific article of the team's work was just published in the journal Nature Communications and just in time for Dark Matter Day, Oct. 31. Dark matter makes up 85 percent of all matter in the universe. While there are multiple astrophysical evidences for dark matter, its nature remains a great mystery. Many forms for dark matter have been hypothesized, theirs is that this form of dark matter, arising from ultralight quantum fields, would form macroscopic objects.

"We are another step closer to discovering how to detect dark matter, and ultimately to define more accurately what it is, what kind of particle it is" Derevianko said. "Mining these archival data, we found no evidence for domain walls of ultralight dark matter at our current sensitivity level. However, this search rules out a vast region of possibilities for this type of dark matter models."

To read more, click here.