Research on the fragile states of matter that could give traction to the many promises of quantum computing has been given a boost by a comprehensive set of theoretical tools developed by A*STAR researchers.
Long theorized but notoriously difficult to achieve in practice, quantum computers rely on a mechanism in quantum physics by which an object can simultaneously exist in a fuzzy superposition of multiple states. This and other complementary quantum processes could theoretically be utilized to perform complex operations many times faster than in classical computers. Yet despite significant research and investment, quantum computers are still undeveloped, with only a handful of rudimentary computing platforms demonstrated experimentally. One of the principal reasons for the lack of progress is the fragility of the quantum states that support mechanisms like superposition.