In a major step toward making a quantum computer using everyday materials, a team led by researchers at Princeton University has constructed a key piece of silicon hardware capable of controlling quantum behavior between two electrons with extremely high precision. The study was published Dec. 7 in the journal Science.
The team constructed a gate that controls interactions between the electrons in a way that allows them to act as the quantum bits of information, or qubits, necessary for quantum computing. The demonstration of this nearly error-free, two-qubit gate is an important early step in building a more complex quantum computing device from silicon, the same material used in conventional computers and smartphones.
"We knew we needed to get this experiment to workifsilicon-based technology was going to have a future in terms of scaling up and building a quantum computer," said Jason Petta, a professor of physics at Princeton University. "The creation of this high-fidelity two-qubit gate opens the door to larger scale experiments."
Silicon-based devices are likely to be less expensive and easier to manufacture than other technologies for achieving a quantum computer. Although other research groups and companies have announced quantum devices containing 50 or more qubits, those systems require exotic materials such as superconductors or charged atoms held in place by lasers.