Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor Gerhard Rempe at the Max Planck Institute of Quantum Optics (MPQ) have now achieved a major breakthrough: they demonstrated the long-lived storage of a photonic qubit on a single atom trapped in an optical resonator. The coherence time of the stored quantum bit outlasts 100 milliseconds and therefore matches the requirement for the creation of a global quantum network in which qubits are directly teleported between end nodes. "The coherence times that we achieve represent an improvement by two orders of magnitude compared to the current state-of-the-art," says Professor Rempe. The study is published in Nature Photonics today.
To read more, click here.