If they exist, axions, among the candidates for dark matter particles, could interact with the matter comprising the universe, but at a much weaker extent than previously theorized. New, rigorous constraints on the properties of axions have been proposed by an international team of scientists.

The latest analysis of measurements of the electrical properties of ultracold neutrons, published in the scientific journal Physical Review X, has led to surprising conclusions. On the basis of data collected in the Electric Dipole Moment of Neutron (nEDM) experiment, an international group of physicists demonstrated that axions, hypothetical particles that may comprise cold , would have to comply with much stricter limitations than previously believed with regard to their mass and manners of interacting with . The results are the first laboratory data imposing limits on the potential interactions of axions with nucleons (i.e. protons or neutrons) and gluons (the particles bonding quarks in nucleons).

"Measurements of the electric dipole moment of neutrons have been conducted by our international group for a good dozen or so years. For most of this time, none of us suspected that any traces associated with potential particles of dark matter might be hidden in the collected data. Only recently, theoreticians have suggested such a possibility and we eagerly took the opportunity to verify the hypotheses about the properties of axions," says Dr. Adam Kozela (IFJ PAN), one of the participants in the experiment.



Read more at: https://phys.org/news/2018-02-dark-matteraxions-ever-fewer.html#jCp

If they exist, axions, among the candidates for dark matter particles, could interact with the matter comprising the universe, but at a much weaker extent than previously theorized. New, rigorous constraints on the properties of axions have been proposed by an international team of scientists.

The latest analysis of measurements of the electrical properties of ultracold neutrons, published in the scientific journal Physical Review X, has led to surprising conclusions. On the basis of data collected in the Electric Dipole Moment of Neutron (
nEDM) experiment, an international group of physicists demonstrated that axions, hypothetical particles that may comprise cold dark matter, would have to comply with much stricter limitations than previously believed with regard to their mass and manners of interacting with ordinary matter. The results are the first laboratory data imposing limits on the potential interactions of axions with nucleons (i.e. protons or neutrons) and gluons (the particles bonding quarks in nucleons).

"Measurements of the electric dipole moment of neutrons have been conducted by our international group for a good dozen or so years. For most of this time, none of us suspected that any traces associated with potential particles of dark matter might be hidden in the collected data. Only recently, theoreticians have suggested such a possibility and we eagerly took the opportunity to verify the hypotheses about the properties of axions," says Dr. Adam Kozela (IFJ PAN), one of the participants in the experiment.

To read mlore, click here.