A new particle detector design proposed at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) could greatly broaden the search for dark matter—which makes up 85 percent of the total mass of the universe yet we don't know what it's made of—into an unexplored realm.
While several large physics experiments have been targeting theorized dark matter particles called WIMPs, or weakly interacting massive particles, the new detector design could scan for dark matter signals at energies thousands of times lower than those measurable by more conventional WIMP detectors.
The ultrasensitive detector technology incorporates crystals of gallium arsenide that also include the elements silicon and boron. This combination of elements causes the crystals to scintillate, or light up, in particle interactions that knock away electrons.
This scintillation property of gallium arsenide has been largely unexplored, said Stephen Derenzo, a senior physicist in the Molecular Biophysics and Integrated Bioimaging Division at Berkeley Lab and lead author of a study published March 20 in the Journal of Applied Physics that details the material's properties.
"It's hard to imagine a better material for searching in this particular mass range," Derenzo said, which is measured in MeV, or millions of electron volts. "It ticks all of the boxes. We are always worried about a 'Gotcha!' or showstopper. But I have tried to think of some way this detector material can fail and I can't."