Sitting at the desk in his lower-campus office at Cold Spring Harbor Laboratory, the neuroscientist Tony Zador turned his computer monitor toward me to show off a complicated matrix-style graph. Imagine something that looks like a spreadsheet but instead of numbers it’s filled with colors of varying hues and gradations. Casually, he said: “When I tell people I figured out the connectivity of tens of thousands of neurons and show them this, they just go ‘huh?’ But when I show this to people …” He clicked a button onscreen and a transparent 3-D model of the brain popped up, spinning on its axis, filled with nodes and lines too numerous to count. “They go ‘What the _____!’”

What Zador showed me was a map of 50,000 neurons in the cerebral cortex of a mouse. It indicated where the cell bodies of every neuron sat and where they sent their long axon branches. A neural map of this size and detail has never been made before. Forgoing the traditional method of brain mapping that involves marking neurons with fluorescence, Zador had taken an unusual approach that drew on the long tradition of molecular biology research at Cold Spring Harbor, on Long Island. He used bits of genomic information to imbue a unique RNA sequence or “
bar code” into each individual neuron. He then dissected the brain into cubes like a sheet cake and fed the pieces into a DNA sequencer. The result: a 3-D rendering of 50,000 neurons in the mouse cortex (with as many more to be added soon) mapped with single cell resolution.

WTF?! To read more, click here