Quantum physics is often defined as the physics of the very small – think atoms, electrons and photons.
But we have managed to demonstrate one of the quirky features of quantum physics at a much larger scale. In a paper published in Nature, we describe how we were able to create quantum entanglement of the motion of objects composed of many billions of atoms.
Entanglement is where two objects that may be separated by an arbitrary distance are somehow connected: a measurement on one object leads to a change in the results of measurements made on the other – what Albert Einstein called “spooky action at a distance”.
Entanglement has been demonstrated for microscopic-scale systems, such as those involving photons, ions and electron spins. But a number of challenges remained before we could demonstrate entanglement on a larger scale.
Before I look at how we solved some of those challenges we need to understand a bit more about quantum physics.
To read more, click here.