While defects in a diamond are mostly undesirable, certain defects are a quantum physicist's best friend, having the potential to store bits of information that could one day be used in a quantum computing system.
Applied physicists at Cornell University have demonstrated a technique for engineering some of the key optical properties of those defects, providing a new tool for exploring quantum mechanics.
A group of researchers led by Greg Fuchs, professor of applied and engineering physics, have become the first to use vibrations produced by a resonator to help stabilize those optical properties, forcing the diamond's electrons into an excited orbital state. The research is detailed in the paper "Orbital State Manipulation of a Diamond Nitrogen-Vacancy Center Using a Mechanical Resonator," published April 17 in the journal Physical Review Letters.
Much like a computer's transistors record binary information by being either "on" or "off," the internal states of these atomic-scale diamond defects can also represent bits of information, such as its spin -- an intrinsic form of angular momentum -- being "up" or "down." But unlike transistors, which only have two states, spin possesses the quantum ability to be up and down at the same time. Used in combination, these quantum states could record and share information exponentially better than transistors, allowing computers to perform certain calculations at once-unimaginable speeds.
To read more, click here.