Researchers in Sweden have produced a bio-based material that is reported to surpass the strength of all known bio-based materials whether fabricated or natural, including wood and spider silk.
Working with cellulose nanofibre (CNF), the essential building block of wood and other plant life, the researchers report that they have overcome the difficulty in translating the incredible mechanical properties of these nanofibres into larger, lightweight materials for use in airplanes, cars, furniture and other products.
"The bio-based nanocellulose fibres fabricated here are 8 times stiffer and have strengths higher than natural dragline spider silk fibres, generally considered to be the strongest bio-based material," says corresponding author Daniel Söderberg, researcher at KTH Royal Institute of Technology. "The specific strength is exceeding that of metals, alloys, ceramics and E-glass fibres."
Published in the journal of American Chemical Society (ACS Nano), the study describes a new method that mimics nature's ability to arrange cellulose nanofibres into almost perfect macroscale arrangements.
Read more at: https://phys.org/news/2018-05-method-cellulose-nanofibres-material-stronger.html#jCp
Researchers in Sweden have produced a bio-based material that is reported to surpass the strength of all known bio-based materials whether fabricated or natural, including wood and spider silk.
Working with cellulose nanofibre (CNF), the essential building block of wood and other plant life, the researchers report that they have overcome the difficulty in translating the incredible mechanical properties of these nanofibres into larger, lightweight materials for use in airplanes, cars, furniture and other products.
"The bio-basednanocellulose fibres fabricated here are 8 times stiffer and have strengths higher than natural dragline spider silk fibres, generally considered to be the strongest bio-based material," says corresponding author Daniel Söderberg, researcher at KTH Royal Institute of Technology. "The specific strength is exceeding that of metals, alloys, ceramics and E-glass fibres."
Published in thejournal of American Chemical Society (ACS Nano), the study describes a new method that mimics nature's ability to arrange cellulose nanofibres into almost perfect macroscale arrangements.