Development of superconductors which can operate at room temperature has been a major focus of interest of physicists all over the world. At times news come out about the discovery of new high-temperature (HTSC) materials which brings hope that such superconductors will be developed. At present, however, a unified theory of such materials is lacking. Victor Lakhno, a physicist from Keldysh Institute of Applied Mathematics, suggested to take the translation-invariant bipolaon theory as a basis. In the paper published in Advances in Condensed Matter Physics possible ways of solving the room-temperature superconductivity problem are presented.

Generally accepted BCS theory for which its originators Bardeen, Cooper and Schrieffer were awarded the Noble Prize in 1972, discarded the phenomenon of superconductivity at temperature close to absolute zero (near -270°C). However in 1986 by way of experiments Alex Müller and Georg Bednorz found a molecular entity belonging to the class of high-temperature superconducting cuprates La2-xBaxCuO4 (?=-243°C), for what they also received the Nobel Prize. These materials received the name HTCS materials. By now scientists have already created materials superconducting at temperatures up to -70°Celsius. Today the main problem is to develop of a microscopic theory capable of explaining experimental facts which cannot be accounted for by the standard BCS theory. This has given rise to a multitude of new explanations of the superconductivity mechanism. One of them is a bipolaron scenario.

To read more, click here.