Researchers at Tohoku University in Japan have discovered a switch to control the spin current, a mechanism needed for information processing with full spin-based devices.
This is significant because although the technology behind detecting and generating the spin current has been established for some time, a long-missing component in the history of spintronics has been a "spin current switch." It's the equivalent of the transistor used in electronics to enable and disable the flow of electricity.
Spintronics is an emerging field of nanoscale electronics which uses not only the charge of electrons but also the spin of electrons. The technology doesn't require a specialized semiconductor material resulting in reduced manufacturing costs.
Other advantages include less energy requirement, as well as low power consumption with competitive data transfer and storage capacity. It has been used in a variety of devices for information processing, memory and storage -- in particular, ultra-high density hard drives and non-volatile memories.
Materials have built-in-mechanisms to enable the electrical detection of the spin current, such as the inverse spin hall effect (ISHE). Using the ISHE, spin current generated by other forms of energy like microwaves (spin pumping) and heat (spin Seebeck effect) is transformed into electrical voltage in the material.
Now, Zhiyong Qiu, Dazhi Hou, Eiji Saitoh and collaborators at Tohoku and Mainz Universities, have proved that a newly developed layered structure of materials works as a spin current switch. Using the structure, they were able to control the transmission of spin current at a 500% increase at near room temperature.
To read more, click here.