Magnetic islands, bubble-like structures that form in fusion plasmas, can grow and disrupt the plasmas and damage the doughnut-shaped tokamak facilities that house fusion reactions. Recent research at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has used large-scale computer simulations to produce a new model that could be key to understanding how the islands interact with the surrounding plasma as they grow and lead to disruptions.

The findings, which overturn long-held assumptions of the structure and impact of magnetic islands, are from simulations led by visiting physicist Jae-Min Kwon. Kwon, on a year-long sabbatical from the Korean Superconducting Tokamak Advanced Research (KSTAR) facility, worked with physicists at PPPL to model the detailed and surprising experimental observations recently made on KSTAR.

To read more, click here.