Most of what we know about chemical reactions comes from experiments that mix together astronomical numbers of molecules. But while this approach gives ensemble averages of parameters like reaction rates, it misses certain details, such as whether the reaction dynamics differ for different quantum states of the same molecule. Researchers at Harvard University have now succeeded in stripping a chemical reaction down to its minimal components. The team built a single molecule from two atoms that they trapped and brought together with focused laser beams known as optical tweezers.

“With this scheme, we can control a chemical reaction at the level of single atoms, without depending on random encounters between the atoms,” said Lee Liu, a Ph.D. student in the Harvard group, who presented the result at the American Physical Society’s meeting of the Division of Atomic, Molecular and Optical Physics (DAMOP). The team, which is led by Kang-Kuen Ni, reported their findings in Science.

To read more, click here.