Scientists have long known that diamond is the best material for conducting heat, but it has drawbacks: It is costly and is an electrical insulator; when paired with a semiconductor device, diamond expands at a different rate than the device does when it is heated.
Now a group of researchers from around the United States has reported that a crystal grown from two relatively common mineral elements—boron and arsenic—demonstrates far higher thermal conductivity than any other semiconductors and metals currently in use, including silicon, silicon carbide,copperand silver.
The discovery has the potential to address a range of technological challenges, including cooling electronic devices and nanodevices, said physicist Zhifeng Ren, a researcher with the Texas Center for Superconductivity at the University of Houston and one of the corresponding authors on the paper announcing the discovery, published Thursday, July 5, in the journal Science.
Thermal conductivity is measured in the unit of Wm-1K-1, used to denote the amount of heat that can pass through a material that is one meter long when the temperature difference from one side to the other is 1 degree Kelvin. The boron-arsenide crystal has a conductivity in excess of 1,000 at room temperature, the researchers reported.
Copper, by comparison, has a conductivity of about 400; diamond has a reported thermal conductivity of 2,000.
Previous reported efforts to synthesize boron-arsenide have yielded crystals measuring less than 500 micrometers—too small for useful application.