Heat transport studies of fractional quantum Hall systems provide evidence for a new phase of matter with potential applications in fault-tolerant quantum computation.

Around 40 years ago, physicists stumbled on an elegant recipe for creating exotic phases of matter: Pour electrons into a clean two-dimensional environment, add a magnetic field, and allow to cool. Out comes a dazzling variety of so-called fractional quantum Hall phases. Certain types of fractional quantum Hall phases, called non-Abelian, provide a potential platform for intrinsically error-resistant quantum computation. However, unambiguously identifying these phases poses a notorious challenge for experimentalists, as measurements often do not uniquely pinpoint which of several candidate phases is present.

To read more, click here.