For a long time, physicists have tried to understand the relationship between a periodic pattern of conduction electrons called a charge density wave (CDW), and another quantum order, superconductivity, or zero electrical resistance, in the same material. Do they compete? Co-exist? Co-operate? Do they go their separate ways?

For the first time, physicists at Ames Laboratory and their international collaborators were able to explore that relationship in the superconducting and CDW material niobium diselenide (NbSe2), through experiments using swift electron bombardment.

"What we are doing is 'poking' the system by introducing disorder into the crystal lattice," said Ames Laboratory scientist Ruslan Prozorov. "By knocking out some of the ions, impacting electrons create defects in the material. Both quantum ordered states (CDW and superconductivity) respond in certain ways to these additional defects, which we can measure."

The research, which included resistivity measurements, London penetration depth studies, and X-ray diffraction, showed that the relationship between CDW and superconductivity is complicated -- in some ways the two states compete with each other, and in others, CDW assists superconductivity.

"Charge density wave competes with superconductivity for the same conduction electrons," said Prozorov. "As CDW is suppressed or disrupted, superconductivity is grabbing the electrons needed to form Cooper's pairs, which form superconducting condensate."

To read more, click here.