Several versions of quantum theory assume some form of localized collapse. If measurement outcomes are indeed defined by localized collapses, then a loophole-free demonstration of Bell non-locality needs to ensure space-like separated collapses associated with the measurements of the entangled systems. This collapse locality loophole remains largely untested, with one significant exception probing Diosi's and Penrose's gravitationally induced collapse hypotheses. I describe here techniques that allow much stronger experimental tests. These apply to all the well known types of collapse postulate, including gravitationally induced collapse, spontaneous localization models and Wigner's consciousness-induced collapse.

To download the .PDF of the paper, click here.