A key molecular building block for self-replicating organisms may have originated in deep space, scientists say.

Phosphorus, particularly in the form of phosphates, is one of a handful of elements crucially important for life. Not only is it a critical component of DNA, the molecule that encodes our genes and allows everything from plants to people to pass them on to their offspring, but it’s important for other cellular processes, ranging from the formation of cell membranes to the shuttling of energy within cells via adenosine triphosphate (ADP) and adenosine triphosphate (ATP).

On modern Earth, phosphates are an important component of fertilisers. They can also be a problem when excess amounts wash into lakes and rivers, creating ecosystem-destroying algae blooms. But in the prebiotic universe, phosphates were in short supply, and scientists have long been unsure where they came from.

Phosphorus itself, astrophysicists believe, formed in the heart of exploding stars, and then spread to the gas and dust clouds from which the next generation of stars and solar systems condensed. But how that phosphorus turned into phosphates has been a mystery.

In a paper published in the journal Nature Communications, however, a team led by Ralf Kaiser, a physical chemist at the University of Hawaii at Manoa, US, thinks it’s found an answer.

To read more, click here.