Argonne scientists have identified a new class of topological materials made by inserting transition metal atoms into the atomic lattice of a well-known two-dimensional material.
In recent years, scientists have become intrigued by a new type of material that shows a kind of unusual and split behavior. These structures, called topological materials, can demonstrate different properties at their surface than in their bulk. This behavior has attracted the attention of scientists interested in new states of matter and technologists interested in potential electronic and spintronic applications.
In a new study from the U.S. Department of Energy's (DOE) Argonne National Laboratory, scientists have identified a new class of topological materials made by inserting transition metal atoms into the atomic lattice of niobium diselenide (NbS2), a well-known two-dimensional material. They found that CoNb3S6, an antiferromagnetic material, exhibits an extremely large anomalous Hall effect, a sign of the topological character of materials.
To read more, click here.