Multiferroics are considered miraculous materials for future data storage – as long as their special properties can be preserved at computer operating temperatures. This task has now been accomplished by researchers at the Paul Scherrer Institute PSI, with colleagues from Institut Laue-Langevin ILL in Grenoble. With this, they have taken these materials one step closer to practical applications. The use of multiferroics holds promise for more energy-efficient computers because an electric field would suffice for magnetic data storage. To produce this, much less power and cooling are required than with conventional magnetic storage. Multiferroics combine magnetic and electrical properties to form a material that is extremely rare. Most such materials only exhibit these two properties at temperatures well below the freezing point. In order to keep the magnetic properties stable even at one hundred degrees, the researchers have employed a trick. They used atoms smaller than those employed in previous investigations, making the material more compact. This was enough to make its structure resistant to heat and preserve its crucial magnetic properties. The researchers published their results today in the journal Science Advances.
To read more, click here.