Quantum computing is expected to solve computational questions that cannot be addressed by existing classical computing methods. It is now accepted that the very first discipline that will be greatly advanced by quantum computers is quantum chemistry.
In 1982, the Nobel Prize-winning physicist Richard Feynman observed that simulating and then analyzing molecules was so difficult for a digital computer as to make it impossible for any practical use. The problem was not that the equations governing such simulations were difficult.
In fact, they were comparatively straightforward, and had already been known for decades. The problem was that most molecules of interest contained hundreds of electrons, and each of these electrons interacted with every other electron in a quantum mechanical fashion—resulting in millions of interactions that even powerful computers could not handle.
To overcome the quantum nature of the equations, Feynman proposed quantum computers, which perform calculations based on the laws of quantum physics, as the ultimate answer. Unfortunately, such precise manipulation of individual quantum objects was far from technically possible. The joke for the past 35 years has been that quantum computing is always ten years away.
In the past few years, what was once a distant dream has slowly become a reality. Not only do quantum computers now exist, millions of programs have been executed via the cloud, and useful applications have started to emerge.
To read more, click here.